Inverting geodetic time series with a principal component analysis-based inversion method

نویسندگان

  • A. P. Kositsky
  • J.-P. Avouac
چکیده

[1] The Global Positioning System (GPS) system now makes it possible to monitor deformation of the Earth’s surface along plate boundaries with unprecedented accuracy. In theory, the spatiotemporal evolution of slip on the plate boundary at depth, associated with either seismic or aseismic slip, can be inferred from these measurements through some inversion procedure based on the theory of dislocations in an elastic half-space. We describe and test a principal component analysis-based inversion method (PCAIM), an inversion strategy that relies on principal component analysis of the surface displacement time series. We prove that the fault slip history can be recovered from the inversion of each principal component. Because PCAIM does not require externally imposed temporal filtering, it can deal with any kind of time variation of fault slip. We test the approach by applying the technique to synthetic geodetic time series to show that a complicated slip history combining coseismic, postseismic, and nonstationary interseismic slip can be retrieved from this approach. PCAIM produces slip models comparable to those obtained from standard inversion techniques with less computational complexity. We also compare an afterslip model derived from the PCAIM inversion of postseismic displacements following the 2005 8.6 Nias earthquake with another solution obtained from the extended network inversion filter (ENIF). We introduce several extensions of the algorithm to allow statistically rigorous integration of multiple data sources (e.g., both GPS and interferometric synthetic aperture radar time series) over multiple timescales. PCAIM can be generalized to any linear inversion algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developing a Complex Independent Component Analysis (CICA) Technique to Extract Non-stationary Patterns from Geophysical Time Series

In recent decades, decomposition techniques have enabled increasingly more applications for dimension reduction, as well as extraction of additional information from geophysical time series. Traditionally, the principal component analysis (PCA)/empirical orthogonal function (EOF) method and more recently the independent component analysis (ICA) have been applied to extract, statistical orthogon...

متن کامل

Choosing the Best Hierarchical Clustering Technique Based on Principal Components Analysis for Suspended Sediment Load Estimation

1- INTRODUCTION The assessment of watershed sediment load is necessary for controling soil erosion and reducing the potential of sediment production. Different estimates of sediment amounts along with the lack of long-term measurements limits the accessibility to reliable data series of erosion rate and sediment yield. Therefore, the observed data of suspended sediment load could be used to ...

متن کامل

Dynamic anomaly detection by using incremental approximate PCA in AODV-based MANETs

Mobile Ad-hoc Networks (MANETs) by contrast of other networks have more vulnerability because of having nature properties such as dynamic topology and no infrastructure. Therefore, a considerable challenge for these networks, is a method expansion that to be able to specify anomalies with high accuracy at network dynamic topology alternation. In this paper, two methods proposed for dynamic anom...

متن کامل

Development of a cell formation heuristic by considering realistic data using principal component analysis and Taguchi’s method

Over the last four decades of research, numerous cell formation algorithms have been developed and tested, still this research remains of interest to this day. Appropriate manufacturing cells formation is the first step in designing a cellular manufacturing system. In cellular manufacturing, consideration to manufacturing flexibility and productionrelated data is vital for cell formation....

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010